Eighth Semester B.E. Degree Examination, Dec. 2013/Jan. 2014 **System Modeling and Simulation**

Time: 3 hrs.

Max. Marks:1

Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part. 2. Normal distribution table is permitted.

PART - A

Briefly explanate advantages and disadvantages of simulation, (10 Marks)

(10 Marks)

What is simulation? Explain with flow-chart, the steps involved in simulation study.

2 A grocery store has one checkout counter. Customer arrive at this checkout counter at random from 1 to 8 minutes apart and each interval time has the same probability of occurrences. The service time vary from 1 to 6 minutes with probabilities as given below:

Service time	$\{\overline{I}\}$	2	3	4	5	6
Probability	0.10	0.20	0.30	0.25	0.10	0.05
	-					

Simulate the arrival of 10 customer and calculate

- i) Average waiting time for a customer
- ii) Probability that a customer has to wait
- iii) Probability of a server being idle
- iv) Average service time
- v) Average time between arrivals.

<u> </u>										
RD's for	913	727	015	948	309	9225	7753	235	302	
RD's service time :	84	10	74	53	17	79	6 1)	67	89	38

Assume that first customer arrives at time 0, Depict the simulation in tabular form.

 \sim

- b. Explain event scheduling algorithm by generating system snapshots at clock = t and $clock = t_1$. (06 Marks)
- 3 What is list processing? Explain the basic operations of list processing. (08 Marks)
 - What is poison process? List out the assumptions which are needed to fulfill the counting process, $\{N(t), t \ge 0\}$, is said to be Poisson process with mean rate λ . (06 Marks)
 - With example explain the properties of Poisson process.

(06 Marks)

- Explain the characteristics of a queuing system. List different queuing notations. (12 Marks)
 - Explain the various steady state parameters of M/G/I queue. (08 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8=50, will be treated as malpractice. Important Note: K On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be t

PART - B

- a. Use linear congruential method to generate a sequence of 5 random members, with $x_0 = 27$ c = 43, a = 17, m = 100.
- b. Use the K S table with $\alpha = 0.05$ for the following set of random members. Determine in the hypothesis that the number are uniformly distributed in the interval (0, 1). Random members are: 0.54, .73, 0.98, 0.11, 0.68.
- c. Test whether the 2^{nd} , 9^{th} , 16^{th} , - - etc /so on numbers in the following sequence are auto correlated by taking $\alpha = 0.05$.

_	0.38	0.48	0.36	0.01	0.54	0.34	0.96	0.06	0.61	0.85
//	0.48	0.86	0.14	0.86	0.89	0.37	0.49	0.600	0.04	0.83 0.99
Ċ	77:42	0.83	0.37	0.21	0.90	0.89	0.91	0.79	6.77	0.99
	0.032	0.27	0.41	0.81	0.96	0.31	0.09	70, 06	0.23	0.77
			0.13							
	0.60	0.84	0.70	0.30	0.26	0.38	0.05	0.19	0.73	0.44

(08 Marks)

- 6 a. Explain acceptance rejection technique for Poisson distribution. Generate 5 Poisson variates with mean $\alpha = 0.25$. Random numbers are : 0.073, 0.693, 0.945, 0.739, 0.014, 0.342.
 - b. Test whether the following data follows Poisson distribution using the chi-square test of goodness of fit. With mean α = 0.05

	100				C	,						
Arrivals/ period	.0.	1	2	3	4	5	6	7	8	9	10	11
Frequency	12	10	19	17	10	8	7	5	5	3	3	1

(10 Marks)

(08 Marks)

- 7 a. The following data are available on the processing time at a m/z (in minutes). Develop an input manifel for the processing time: 0.64, 0.59, 1.1, 3.3, 0.54, 0.04, 0.45, 0.25, 4.4, 2.7, 2.4, 1.1, 3.6, 0.61, 0.20, 1.0, 0.27, 1.7, 0.04, 0.34. (08 Marks)
 - b. Explain types of simulations with respect to output anlaysis. Briefly explain the confidence interval estimation method. (12 Marks)
- 8 a. Explain the components of verification and validation process. Explain with neat diagram, model building, verification and validation process. (12 Marks)
 - b. With neat diagram, explain the iterative process of calibrating a model.

* * * * *